
1.  Introduction
Warming trends and their patterns are well established across the globe and largely attributable to anthropogenic 
forcing (Bindoff et al., 2013). Trends in regional temperature on seasonal and diurnal scales can exhibit notable 
differences from continental and global trends due to a consortium of factors including changes in circulation 
patterns (Abatzoglou & Redmond, 2007), land-use change (Christidis et al., 2013), changes in aerosols (Lelieveld 
et al., 2019), and concurrent trends in soil moisture (Vogel et al., 2017). Complementary to standard summaries 
of temperature trends (e.g., annual mean temperature), insight on climate change and associated impacts may be 
gained by decomposing temperature trends based on precipitation occurrence and amount. The covariance struc-
ture of daily temperature and precipitation and changes thereof have several notable impacts on hydrologic and 
ecological systems. For example, near the climatological freezing-level, the relationship between temperature and 
precipitation occurrence and amount can impact flood hazards (Musselman et al., 2018), snowpack storage (Klos 
et al., 2014), and water supply (Berghuijs et al., 2014). Likewise, differences in temperatures during the warm 
season between dry days and wet days impact vegetative moisture stress through altered evaporative demand with 
impacts to both agriculture and ecosystems (Holden et al., 2018).

Air temperature is sensitive to local radiation budgets and the advection of air masses associated with precipi-
tation occurrence and intensity (Berg et al., 2009; Isaac & Stuart, 1992). For example, subtropical transport of 
warm moist air in atmospheric rivers during winter leads to anomalously warm daily minimum temperatures 
across the mountains of the western United States (US; Hu & Nolin, 2019), while reduced downward shortwave 
radiation during wet days in the warm season suppresses daily maximum temperature. Studies have examined 

Abstract  Temperature and precipitation covary across timescales due to thermodynamic and dynamic 
processes. We examine spatial patterns and trends of daily precipitation dependence of maximum and 
minimum temperature anomalies across the contiguous United States during 1950–2020. In the warm season, 
maximum temperatures are anomalously cool on wet days, while in the cool season, minimum temperatures 
are anomalously warm on wet days. During 1950–2020, warm-season maximum temperatures increased 0.5°C 
more on wet days than on dry days, whereas minimum temperature on dry days warmed slightly more than 
on wet days in both the warm and cool season. By contrast, climate models show more subtle and consistent 
precipitation dependence of temperature trends with approximately 0.2°C more warming on dry days than on 
wet days. Improved understanding of precipitation-dependent temperature trends is critical for understanding 
and modeling the impacts of changing climate on snowpack, drought, and heat stress.

Plain Language Summary  Are wet days warmer or cooler than dry days, and have wet or dry days 
warmed faster? These simple questions have answers that vary spatially, seasonally, and diurnally. Here, we 
explore these patterns using long-term temperature records across the contiguous United States. We find that 
maximum temperatures generally warmed more on wet than dry days during 1950–2020, while the opposite 
was seen for minimum temperatures warmed more on dry days than wet days. Global climate models show 
a more consistent pattern of greater warming on dry days than wet days. The extent to which wet days warm 
relative to dry days with continued climate change will shape impacts on critical physical, ecological, and social 
systems, including snowpack, agricultural and ecological drought, and heat stress.
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the covariance of temperature and precipitation on monthly and seasonal timescales using both observations 
and climate models (Trenberth & Shea, 2005). Observed precipitation-dependent temperature trends across the 
contiguous US (CONUS) have been documented for some regions and seasons. Prior work has shown greater 
warming trends during wet days than during dry days in the cool season over the western US (Hu & Nolin, 2020; 
Knowles et al., 2006; Safeeq et al., 2016). However, a comprehensive geographic, seasonal, and diurnal analysis 
of daily precipitation dependence of temperature trends across CONUS is lacking.

Anthropogenic climate change will likely influence the precipitation dependence of temperature trends. Re-
solving how these dynamic and thermodynamic factors play out regionally and seasonally can help improve 
simulations of projected climate impacts that may be sensitive to precipitation-dependent temperature changes. 
On seasonal timescales, studies have projected enhanced warming in regions with reduced latent heat flux and 
increased downward shortwave fluxes co-located with reduced surface moisture and precipitation (Dirmeyer 
et al., 2013). On daily timescales, studies have shown the role of atmospheric dynamics and differential warming 
of air mass source regions leading to precipitation-dependent temperature trends. For example, O'Gorman and 
Schneider (2009) and Rupp and Li (2017) project relatively less warming of mid-to-high latitude landmasses dur-
ing extreme precipitation days compared to dry days due to the reduced warming of subtropical air mass source 
regions for extreme precipitation events.

This study addresses these research gaps by examining spatial and seasonal patterns of the precipitation depend-
ence of temperature anomalies and trends across CONUS. Specifically, we examined climatological differences 
in both daily maximum and daily minimum temperature anomalies between dry days and wet days, as well as 
between very wet days and low-to-moderate wet days during the warm season and cool season. Second, we ex-
amined temperature trends during 1950–2020 decomposed by precipitation occurrence and amount. Finally, we 
compare results from observational records to results from global climate models (GCMs).

2.  Data/Methods
2.1.  Data Sets

Daily observations of maximum temperature (Tmax), minimum temperature (Tmin), and precipitation (P) from 
1140 stations in CONUS that are part of the Historical Climate Network (USHCN) were acquired from the 
daily Global Historical Climatology Network (GHCN-D; Menne et al., 2012) database during 1950–2020. Data 
flagged as failing any GHCN quality assurance check were discarded. We examined data from USHCN stations 
given their long-term, higher-quality records that attempt to reduce non-climatic influences. However, since Tmax 
and Tmin data in the current GHCN-D are not corrected for non-climatic biases (e.g., observational practices, 
station relocations), we apply a simple correction using USHCN monthly data (v2.5) that have been corrected 
for biases such as time of observation using pairwise station homogenization. Corrections were applied monthly 
such that the average of daily GHCN temperature data within a month matches USHCN monthly data, resulting 
in a consistent correction for each day of the month. Months missing more than 5 days of either Tmax or Tmin were 
discarded from subsequent analyses. No corrections were made to precipitation data. Supplemental monthly 
latent and sensible surface heat fluxes from ERA-5 (Hersbach et al., 2020) were additionally used to assess the 
potential influence of land-surface energy fluxes on interannual variability and trends in precipitation-dependent 
temperatures.

We complement observations with daily Tmax, Tmin, and P data from 20 GCMs that participated in the Coupled 
Model Intercomparison Project Phase 5 (CMIP5; Table S1 in Supporting Information S1). We limited our focus 
to historical climate experiments (1950–2005) and RCP4.5 climate experiments (2006–2020) for compatibility 
with the observational period. Climate model outputs were re-gridded to a common 2° spatial resolution grid.

2.2.  Methods

Wet days were defined as days reporting at least 1 mm of precipitation, and very wet days as the top 10% of wet 
days defined separately for each station and season (Pryor et al., 2009). Dry days were defined as days reporting 
less than 1 mm of precipitation. To account for the influence of the seasonal cycle on temperature, temperature 
data were converted into anomalies relative to a centered 31-day moving average of daily 1981–2010 averages. 
We calculate Tmax and Tmin anomalies on (a) dry days, (b) wet days, (c) very wet days, and (d) low-to-moderate 
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wet days (wet days not considered very wet). We focus on climatologies and trends over time for the cool season 
(November–April) and warm season (May–October). Results for traditional climatological seasons (e.g., Decem-
ber–February) are provided as figures in Supporting Information S1. We constrained most of our attention to 
these two 6-month periods due to both applied and statistical purposes. First, the covariance structure of tempera-
ture and precipitation during the cool season is important in shaping snowpack development (Hu & Nolin, 2020), 
while the daily covariance structure in the warm season is important for vegetation moisture stress through vapor 
pressure deficits (Hsiao et al., 2019). Second, our focus on the top 10% of wet days limits robust statistical analy-
sis of trends with traditional 3-month climatological seasons at sites with infrequent wet days.

First, we examined the climatology of Tmax and Tmin anomalies conditioned by precipitation by pooling all data 
during 1981–2010. Specifically, we examined differences in temperature anomalies between wet days and dry 
days, as well as between very wet days and low-to-moderate wet days. We omitted stations with fewer than 10% 
wet days in a season. Significant differences in temperature anomalies stratified by daily precipitation category 
were qualified using a Student's t-test (p < 0.05).

Second, we examined Tmax and Tmin trends during dry days, very wet days, low-to-moderate wet days, and trends 
in the number of wet days during 1950–2020. Trends were analyzed from time series of average seasonal Tmax and 
Tmin anomalies calculated separately for dry days, wet days, and very wet days each year. This approach can lead 
to different sample sizes of days per year, but follows other studies using similar analytical approaches (Gonzales 
et al., 2019; Hu & Nolin, 2019). Complementary to our climatological analysis, we examined trends in the differ-
ence in temperature anomalies on wet days versus dry days as well as on very wet days versus low-to-moderate 
wet days. Years with more than 20% of days missing were omitted in station trend calculations. Trends were cal-
culated using Sen-Theil slope estimator and were considered significant using a two-tailed Mann-Kendall trend 
test at p < 0.05. We additionally conducted tests for field significance (Livezey & Chen, 1983) to address multiple 
testing issues and violation of statistical independence assumptions due to spatial autocorrelation (Wilks, 2011). 
Trends were considered field significant when the fraction of locally significant trends of a given sign exceeds the 
95th percentile of the distribution. Finally, we summarized regional trends over nine NOAA US climate regions. 
We report station mean trends for each region as well as the 95% confidence intervals assessed through bootstrap 
resampling with replacement across stations in each region.

Both the climatological and trend analyses were repeated for each GCM. While statistics were calculated sep-
arately for each GCM, we herein report results for the 20-model mean. Regional results were calculated using 
area-weighted trends for each NOAA US climate region.

3.  Results
3.1.  Climatology of Precipitation Dependence of Daily Temperature Anomalies

During the cool season (November–April), coherent patterns in differences of Tmin and Tmax anomalies between 
wet and dry days were observed across CONUS (Figure 1). Approximately 82% of stations had significantly 
higher Tmin anomalies on wet days than dry days (+2.1°C warmer on wet days averaged across all stations), with 
the exception being in the immediate lee of the Rockies in the Great Plains (Figure 1b). The pattern for cool sea-
son Tmax was more complex; Tmax anomalies were significantly lower on wet days than dry days across the Great 
Plains and much of the southwestern US, while the opposite was found across the Ohio River Valley and North-
east (Figure 1a). Approximately 72% of stations had significantly higher Tmin anomalies on very wet days than 
low-to-moderate wet days during the cool season (Figure 1d). Significantly higher Tmax anomalies were observed 
on very wet days compared with low-to-moderate wet days during the cool season across windward portions of 
the Pacific Northwest and a broad section of the Midwest, Ohio River Valley, and Northeastern US (Figure 1c).

During the warm season (May–October), wet days had lower Tmax anomalies and higher Tmin anomalies com-
pared with dry days across most of CONUS. Wet day Tmax anomalies during the warm season were significantly 
lower than dry days for 99.5% of CONUS stations (station average −2.3°C; Figure 1e). By contrast, wet day 
Tmin anomalies were significantly higher than dry day Tmin anomalies for approximately 80% of stations, most 
notably across the Midwest and Ohio River Valley and portions of western Oregon and Washington, and Rocky 
Mountains (Figure 1f). Differences in temperature anomalies between very wet days and low-to-moderate wet 
days exhibited similar spatial patterns to those seen between wet days and dry days but were reduced in magnitude 
(Figures 1g and 1h). Overall, similar patterns for the warm season and the cool season were also found using 
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standard climatological seasons (Figure S1 in Supporting Information S1). Finally, we show that climate models 
reflect comparable precipitation-dependent differences in Tmax and Tmin anomalies to those observed (Figure S2 
in Supporting Information S1).

Figure 1.  Differences in temperature anomalies for wet days minus dry days for (a) November–April Tmax, (b) November–April Tmin, (e) May–October Tmax, and (f) 
May–October Tmin. Composite differences in temperature anomalies for very wet days minus low-to-moderate wet days for (c) November–April Tmax, (d) November–
April Tmin, (g) May–October Tmax, and (h) May–October Tmin. Large symbols denote statistical significance at p < 0.05 assessed using t-test. Stations with fewer than 
10% wet days per season are omitted.
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3.2.  Precipitation Dependence of Temperature Trends

Regionally distinct precipitation-dependent trends in Tmin and Tmax anomalies were observed over CONUS during 
1950–2020 (Figure 2; Figure S3 in Supporting Information S1 for climatological seasons). In the cool season, 
Tmax anomalies on wet days warmed an average of +0.39°C relative to dry days over the 71-year period, including 
widespread significant relative warming across the central and southeastern US (Figure 2a, Tables S2 and S3 in 
Supporting Information S1). In the warm season, Tmax anomalies on wet days warmed +0.53°C relative to dry 
days, with the most significant widespread relative differences in precipitation-dependent Tmax trends observed 

Figure 2.  Trends during 1950–2020 (°C over the 71-year record) in temperature anomalies for wet days minus dry days for (a) November–April Tmax, (b) November–
April Tmin, (e) May–October Tmax, and (f) May–October Tmin. Linear trends during 1950–2020 in temperature anomalies for very wet days minus low-to-moderate wet 
days for (c) November–April Tmax, (d) November–April Tmin, (g) May–October Tmax, and (h) May–October Tmin. Large symbols denote statistically significant (p < 0.05) 
trends. Trends in temperature for very wet days minus low-to-moderate wet days are omitted for stations with fewer than 10% wet days per season.
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across the Great Plains and Midwest (Figure 2e). Differences in Tmin trends on wet days versus Tmin trends on dry 
days were weaker and more spatially heterogeneous than for Tmax with relative cooling of wet days versus dry days 
in both seasons (Tables S2 and S3 in Supporting Information S1).

Patterns in temperature trends on very wet days versus low-to-moderate wet days exhibited more subtle and 
heterogeneous differences, especially during the cool season. Very wet days in the cool season cooled relative 
to low-to-moderate wet days for both Tmax and Tmin anomalies by −0.46°C and −0.39°C, respectively (station 
average). By contrast, very wet days warmed +0.29°C and +0.26°C relative to low-to-moderate wet days in the 
warm season for both Tmax and Tmin, respectively. However, unlike widespread significant differences in tempera-
ture anomaly trends shown between wet days and dry days, differential temperature trends between very wet and 
low-to-moderate wet days were not field significant (Table S3 in Supporting Information S1).

3.3.  Regional Summaries of Observations and Models

Most of the nine NOAA US climate regions showed positive trends in Tmax and Tmin anomalies during 1950–2020 
in both the cool season and warm season (Figure 3; Table S2 in Supporting Information S1) with overall larger 
trends seen for Tmin as reported by previous studies (Easterling et al., 1997). However, distinct differences in 
regional temperature trends were found when disaggregating by precipitation and season. In the cool season, dry 
days had greater Tmin warming than wet days, and low-to-moderate wet days had greater warming than very wet 
days for most regions except the South and Southeast. In contrast, trends in Tmax were higher on wet days relative 
to dry days in the warm season. Substantial asymmetry in dry day temperature trends for Tmax versus Tmin during 
the warm season were seen for most regions in the central and eastern US (Figure 3). Notably, several regions 
showed negligible warm season trends in dry day Tmax in contrast to warming seen both in dry day Tmin and both 
Tmax and Tmin on wet days during the warm season.

Changes in precipitation frequency as well as land-surface energy fluxes are hypothesized to have contributed to 
some of the observed precipitation-dependent temperature trends. For example, limited change in warm-season 
dry day Tmax anomalies across portions of the central US during 1950–2020 may be imparted by increased latent 
heat fluxes (e.g., Jasinski et al., 2019) given that such land-surface fluxes have a larger impact on the surface 
energy budget on dry days than wet days (Adegoke et al., 2003). Notably, a significant increase in warm season 
latent heat flux was found only for the Rockies/Plains region during 1950–2020 in ERA-5 data (Figure S4 in 
Supporting Information S1). Additionally, we observed a significant increase in warm season wet days for 22% 
of stations (Figure S5 in Supporting Information S1), with widespread increases in the Rockies/Plains, Midwest 
and Northeast, consistent with previous studies (Bartels et al., 2020; Karl & Knight, 1998). Increased wet day 
frequency during the warm season and overall increased precipitation across much of the eastern two-thirds of 
CONUS during the last 71-year has increased surface soil moisture (Dai et al., 2004), in contrast to decreased 
warm season soil moisture across the western US (Williams et al., 2020). Across much of the central US, we posit 
that increased precipitation and latent heat fluxes have suppressed warm season dry day Tmax. In support of these 
hypotheses, we find weak (r = 0.3–0.4), albeit statistically significant (p < 0.05), positive interannual correla-
tions between the difference between wet day and dry day Tmax in the warm season and both the number of wet 
days (from in situ observations) and latent heat flux (from ERA-5) for several regions (Figure S4 in Supporting 
Information S1).

Climate models depict more homogeneous changes in precipitation-dependent temperature trends (Figure 3; Fig-
ure S6 in Supporting Information S1). During the cool season, models depict attenuated warming for wet days 
relative to dry days, with the most notable differences in the Northwest and West regions where dry days warm 
30%–40% more than very wet days for both maximum and minimum temperatures. During the warm season, 
models depict slightly less warming on wet days than dry days for most regions. While climate models showed 
relatively weak differences in precipitation-dependent temperature trends, there was general agreement in the 
sign of the differences across models (Table S4 in Supporting Information S1).

Formal attribution of the drivers of differences between GCM and observed asymmetric precipitation-dependent 
temperature trends is beyond the scope of the current analysis, though we briefly discuss potential mechanisms 
here. Observed precipitation-dependent Tmin trends are similar to climate model trends with slightly enhanced 
warming on dry days compared with wet days. In contrast, differences between observations and climate models 
of the precipitation dependence of Tmax trends are evident, particularly in the warm season. This suggests that 
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factors not directly tied to anthropogenic forcing, such as the observed trends in precipitation and precipitation 
frequency, and possible local changes in land-use (Mishra et al., 2015), have contributed to observed precipitation 
dependence of Tmax. We hypothesize that such differences are partially tied to internal variability. First, given the 
significant interannual correlations between wet day frequency and precipitation-dependent Tmax (Figure S4 in 
Supporting Information S1), we note that observed increases in the number of wet days in the warm season in 
portions of the central and eastern US deviate from climate model simulations and are outside the range of trends 
simulated across the 20 climate models in some regions (Table S5 in Supporting Information S1). Increased 
precipitation and precipitation-frequency across the eastern two-thirds of CONUS may be potentially linked 
to pan-Pacific teleconnections (Strong et al., 2020). Second, changes in surface energy budgets imposed by the 
documented agricultural intensification and irrigation in the Midwest (e.g., Mueller et al., 2016; Nikiel & Elta-
hir, 2019) would tend to reduce dry day Tmax;; these factors may not be adequately represented in GCMs. Lastly, 

Figure 3.  Regional trend in daily maximum temperature (Tmax) and daily minimum temperature (Tmin) for dry days, low-to-moderate wet days, and very wet days during 
1950–2020 for November–April (left) and May–October (right). The regional trend is provided for station mean trends bracketed by the 95% confidence interval for 
each region obtained by bootstrap resampling of station trends. Regions with more than one-third of stations not having sufficient data for trend calculation are omitted. 
Triangles depict the mean trend computed from 20 individual climate models. The coverage of each National Oceanic and Atmospheric Administration climate regions 
is shown in the lower-left corner of each subplot.
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while we used identical definitions of wet days for in situ observations and GCM output, differences in spatial 
scales–particularly for convective precipitation in the warm season–likely confound direct comparisons.

4.  Discussion and Conclusions
Building on previous studies that examine monthly and seasonal covariance between temperature and precipita-
tion (Madden & Williams, 1978; Trenberth & Shea, 2005), we demonstrate widespread significant differences 
in daily temperature anomalies conditioned by precipitation in both observations and climate models across 
CONUS. These results are largely consistent with first principles that dictate thermodynamic and advective 
processes, with distinct diurnal and seasonal differences. Increased downward longwave radiation associated 
with elevated atmospheric moisture and cloud cover as well as stronger warm air advection, including that from 
atmospheric rivers (Neiman et al., 2011), on very wet days favors anomalously high Tmin, particularly during 
the cool season for most of the region. By contrast, increased cloud cover during wet days inhibits downward 
shortwave radiation at the surface and daytime warming leading to generally anomalously low Tmax, particularly 
during the warm season. Notably, these advective and thermodynamic controls vary seasonally, geographically, 
and diurnally. For example, we show that Tmin and Tmax wet days are cooler than dry days during the cool season 
in the lee of the US Rockies, similar to results in the lee of the Canadian Rockies (Isaac & Stuart, 1992). The 
high frequency of downslope winds in the lee of the Rockies in the cool season (Abatzoglou et al., 2020) may 
contribute to compressional warming on dry days for part of the region.

Warming temperature trends were broadly observed across Tmin and Tmax, seasonally, and across precipitation 
classes. The overall direction and magnitude of reported trends follow previous studies (Portmann et al., 2009), 
though trends shown here exhibit a few key differences when disaggregated by precipitation. Significant asym-
metry in precipitation-dependent temperature trends was noted including widespread relative warming of Tmax on 
wet days compared to dry days, particularly during the warm season. By contrast, observations showed a weak 
tendency for reduced warming of Tmin on wet days compared to dry days. Whereas previous studies have shown 
relative warming of wet days compared to dry days regionally during the cool season (Safeeq et al., 2016), we 
show this response to be much more widespread and evident for Tmax but not for Tmin. By contrast, climate models 
show consistent, albeit weak, precipitation-dependent temperature trends, predominantly with greater warming 
of both Tmin and Tmax on dry relative to wet days.

Observed and future changes in temperature have a constellation of impacts for society and the environment. Very 
wet days in regions where water resources are snow dependent such as the western US showed reduced rates of 
warming in the cool season relative to other days. Recognizing that heavy snowfall events account for 20%–38% 
of annual snowfall totals (Lute & Abatzoglou, 2014), reduced warming on very wet days in climate model sim-
ulations may buffer snowpack declines relative to assumed changes that are agnostic with respect to precipita-
tion dependent temperature changes. Some climate projections project such asymmetric precipitation-dependent 
temperature changes under continued climate change (Rupp & Li, 2017). Changing temperature-precipitation 
covariance structures may also represent a source of error for the many studies of climate change impacts that 
use historical temperature sensitivity of a social or ecological outcome to anticipate future conditions (Marshall 
et al., 2020). Statistical downscaling approaches should incorporate such differential rates of warming condi-
tioned on precipitation (e.g., Cannon, 2018) in contrast to simple approaches that apply uniform warming. Final-
ly, climate projections suggest a decrease in wet day occurrence across parts of the western US by the end of the 
century with limited changes in the eastern US (Polade et al., 2014). Given the distinct differences in Tmax and 
Tmin trends between wet and dry days, such changes in wet day occurrence would likely be reflected in overall 
temperature changes.

Data Availability Statement
Data sets used herein were acquired from the following public repositories: (a) GHCN-Daily (https://www.ncdc.
noaa.gov/ghcn-daily-description/), (b) USHCN v2.5 data (https://www.ncei.noaa.gov/data/us-historical-clima-
tology-network/2.5/), (c) Daily CMIP5 output (https://esgf-node.llnl.gov/search/cmip5/).

https://www.ncdc.noaa.gov/ghcn-daily-description/
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https://www.ncei.noaa.gov/data/us-historical-climatology-network/2.5/
https://www.ncei.noaa.gov/data/us-historical-climatology-network/2.5/
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